Step of Proof: adjacent-cons
11,40
postcript
pdf
Inference at
*
2
2
I
of proof for Lemma
adjacent-cons
:
1.
T
: Type
2.
x
:
T
3.
y
:
T
4.
u
:
T
5.
L
:
T
List
6. 0 < ||
L
||
7.
i
:{0..(||
L
|| - 1)
}. (
x
=
L
[
i
] &
y
=
L
[(
i
+1)])
i
:{0..((||
L
||+1) - 1)
}. (
x
= [
u
/
L
][
i
] &
y
= [
u
/
L
][(
i
+1)])
latex
by ((((ExRepD
)
CollapseTHEN (((InstConcl [
i
+1])
CollapseTHEN (Auto'))
))
)
CollapseTHEN (((
C
RWO "select_cons_tl" 0)
CollapseTHEN (((Auto')
CollapseTHEN (((All ArithSimp)
CollapseTHEN (
C
Auto
))
))
))
))
latex
C
.
Definitions
n
+
m
,
#$n
,
x
:
A
.
B
(
x
)
,
[
car
/
cdr
]
,
P
Q
,
P
Q
,
i
j
,
,
x
:
A
.
B
(
x
)
,
T
,
True
,
n
-
m
,
x
:
A
B
(
x
)
,
Void
,
l
[
i
]
,
t
T
,
{
x
:
A
|
B
(
x
)}
,
,
i
j
<
k
,
A
,
False
,
P
Q
,
-
n
,
||
as
||
,
s
=
t
,
{
i
..
j
}
,
type
List
,
Type
,
P
&
Q
,
x
:
A
B
(
x
)
,
A
B
,
a
<
b
Lemmas
iff
wf
,
rev
implies
wf
,
select
cons
tl
,
true
wf
,
int
seg
wf
,
le
wf
,
squash
wf
,
select
wf
origin